翻訳と辞書
Words near each other
・ Froan
・ Froan Chapel
・ Frob
・ Frobel
・ Froben Christoph of Zimmern
・ Frobenioid
・ Frobenius
・ Frobenius algebra
・ Frobenius category
・ Frobenius covariant
・ Frobenius determinant theorem
・ Frobenius endomorphism
・ Frobenius Forster
・ Frobenius group
・ Frobenius Institute
Frobenius manifold
・ Frobenius matrix
・ Frobenius method
・ Frobenius normal form
・ Frobenius Orgelbyggeri
・ Frobenius pseudoprime
・ Frobenius solution to the hypergeometric equation
・ Frobenius splitting
・ Frobenius theorem
・ Frobenius theorem (differential topology)
・ Frobenius theorem (real division algebras)
・ Frobenius's theorem (group theory)
・ Frobenius–Schur indicator
・ Froberg mutiny
・ Froberville


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Frobenius manifold : ウィキペディア英語版
Frobenius manifold
In the mathematical field of differential geometry, a Frobenius manifold is a flat Riemannian manifold with a certain compatible multiplicative structure on the tangent space. The concept generalizes the notion of Frobenius algebra to tangent bundles. They were introduced by Dubrovin.〔B. Dubrovin: ''Geometry of 2D topological field theories.'' In: Springer LNM, 1620 (1996), pp. 120–348.〕
Frobenius manifolds occur naturally in the subject of symplectic topology, more specifically quantum cohomology. The broadest definition is in the category of Riemannian supermanifolds. We will limit the discussion here to smooth (real) manifolds. A restriction to complex manifolds is also possible.
== Definition ==
Let ''M'' be a smooth manifold. An ''affine flat'' structure on ''M'' is a sheaf ''T''''f'' of vector spaces that pointwisely span ''TM'' the tangent bundle and the tangent bracket of pairs of its sections vanishes.
As a local example consider the coordinate vectorfields over a chart of ''M''. A manifold admits an affine flat structure if one can glue together such vectorfields for a covering family of charts.
Let further be given a Riemannian metric ''g'' on ''M''. It is compatible to the flat structure if ''g''(''X'', ''Y'') is locally constant for all flat vector fields ''X'' and ''Y''.
A Riemannian manifold admits a compatible affine flat structure if and only if its curvature tensor vanishes everywhere.
A family of ''commutative products
*'' on ''TM'' is equivalent to a section ''A'' of ''S''2(T
*
''M'') ⊗ ''TM'' via
:X
*Y = A(X,Y). \,
We require in addition the property
:g(X
*Y,Z)=g(X,Y
*Z). \,
Therefore the composition ''g''#∘''A'' is a symmetric 3-tensor.
This implies in particular that a linear Frobenius manifold (''M'', ''g'', 
*) with constant product is a Frobenius algebra ''M''.
Given (''g'', ''T''''f'', ''A''), a ''local potential Φ'' is a local smooth function such that
:g(A(X,Y),Z)=X \,
for all flat vector fields ''X'', ''Y'', and ''Z''.
A ''Frobenius manifold'' (''M'', ''g'', 
*) is now a flat Riemannian manifold (''M'', ''g'') with symmetric 3-tensor ''A'' that admits everywhere a local potential and is associative.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Frobenius manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.